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The problem of inward solidification of a liquid in cylindrical and spherical geometries is 
considered. Freezing is accomplished at the boundary by both radiative and convective 
cooling. The liquid is assumed at its melt temperature. The method of strained coordinates 
is used and the zeroth and first-order solutions are developed for freezing-front location, 
total freezing time, and temperature profile in the solid. The results are compared with a 
numerical solution, obtained by using the enthalpy method, for various values of the Stefan 
number. There is excellent agreement between the solutions for small Stefan number. The 
advantages of the perturbation method (simplicity, relatively good accuracy) in certain 
cases are discussed and elaborated. 
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Introduction 

The problem of heat conduction through a medium with phase 
change has been the subject of numerous studies. The phase 
change problems in such practically important geometries as 
spheres and cylinders have no exact solutions except in very 
simple and special cases. These geometries have various appli- 
cations in aerodynamic heating of spaceships and reactor fuel 
elements (melting) and groundwater freezing and casting of 
metals (solidification). There are no exact solutions for bounded 
spherical or cylindrical regions. Therefore a large number of 
studies have been devoted to the development of approximate 
solutions to this and similar classes of problems. Extensive lists 
of references can be found in Wilson et al., 1 Rubinstein, 2 
Crank, 3 and Ockendon and Hodgkins. 4 An interesting and 
useful mathematical tool is the perturbation method, 5 7 which 
has been used effectively in this and similar classes of prob- 
lems. 8-16 The perturbation method can, in this case, provide 
a simple and fast method of solution without a significant loss 
of accuracy. 

A regular parameter perturbation technique was applied to 
the problem of outward and inward solidification in radial 
systems by Huang and Shih. '7 They showed that, although 
the regular parameter expansion gives accurate solutions for 
the outward solidification problem, the scheme fails for inward 
freezing in the radial systems owing to singularities near the 
center. After finding similar results using regular perturbation 
expansions, Pedroso and Domoto 18 successfully developed 
uniformly valid solutions by applying the method of strained 
coordinates for the inward solidification in spheres at constant 
wall temperature. Using the same method, Milanez and 
Boldrini ~9 discussed and solved the more complicated problem of 
inward solidification in spheres with convective wall condition. 

The focus of the present study is the problem of inward 
solidification in spheres and cylinders with combined convective 
and radiative cooling at the wall. The contribution of radiation 

Address reprint requests to Professor Parang, Mechanical and 
Aerospace Engineering Department, University of Tennessee, Knox- 
ville, TN 37996, USA. 
Received 11 March 1989; accepted 24 October 1989 

in solidification problems is determined by numerical solution 
of the governing equations 2° and discussed. The presence of 
significant radiative cooling at the boundary of radial systems 
may be encountered in space solidification processes. Also, 
natural convection and radiative cooling may be both significant 
in cooling with phase change problems in microgravity when, 
for example, electromagnetic levitation furnaces or acoustic 
levitators are used. For a small Stefan number, the method of 
strained coordinates 1a'19 is used to obtain the solution for 
temperature and total freezing time. Mathematically the problem 
involves two additional complexities: (1) the nonlinear radiative 
boundary condition imposed at the wall; and (2) the existence 
of an additional parameter indicating the relative importance 
of radiative to convective contributions in the solidification 
process. 

Following solution of the problem by the method of strained 
coordinates, the accuracy and effectiveness of the perturbation 
analysis is then compared with the numerical solution of the 
equations governing the inward solidification of a liquid at its 
fusion temperature in both spheres and cylinders. The numerical 
method selected for this purpose is the enthalpy method. A 
detailed discussion of the method can be found in various 
references, including Voller and Cross 21 and Voller. 22 

Analysis 

Perturbation 

Consider a radial system (a sphere or cylinder) with radius R o 
containing a fluid with constant properties at its freezing 
temperature Tf. The system is suddenly cooled by convection 
and radiation through exposure to a medium at To~ with an 
average heat transfer coefficient h. A schematic of the problem 
configuration is shown in Figure 1. The governing equations 
for solidification and the corresponding initial and boundary 
conditions are 

t~T_ K 
~ [ R t ? T ] ,  K ~T R f < R < R o  (1) 

~t pCR ~R ~ +J pCR t3R - - 

where j is 0 (cylinder) or 1 (sphere). The boundary conditions 
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Figure 1 Sphere or cylinder cross section with radial temperature 
profile 

are 

T(t, R < Rf) = Tf (2) 

OT 
- K - - = h ( T - -  T~)+ae(T4-  T~) R=R o (3) 

OR 

pL 0RI = K Of R = R I (4) 
0t OR 

The following nondimensional variables are introduced: 

R Rf T To~ hRo 
r = - - ,  r; --  0 =  , ~ = - -  B i -  

Ro Ro' T I Tf' K (5) 
Bi _aeT}Ro CTf KTst Bi h 

, 8 =  , " C=  f l = - - ~  
K L pLRZo ' Bi, ~eT~ 

where Bi and Bir are the Biot number and equivalent radiation 
"Blot" number, respectively, e is equivalent to the Stefan 
number based on the absolute freezing temperature, and z is 
dimensionless time. Substituting Equation 5 into Equations 1-4 

yields the following system of equations: 

00 : ( r  + ; I O0 e - - - -  r y < r < l  (6) 
Or f Or r Or \ Or/ r Or 

O(rf, r = r l )=  1 (7) 

1 00 
"=fl(O--o:)+(04-c~ 4) r = l  (8) 

Bir Or 

Ors _ O0 (9) 
Or Or ¥ r.t" 

We now solve these equations by applying the method of 
strained coordinates. The two coordinates chosen for straining 
are r and ri: 

r=¢I,+ ~ gai(~, ~) (10) 
i - 1  

ry=~P+ ~ ga~(W,(I)=~P) (11) 
i = l  

where a~(q ~, (I)) will be determined as part of the solution of the 
problem. We further assume that 

lira ai(W, (I))= lim ai(~P, ~P)=0 
O ~  1 t F ~  1 

so that the boundary conditions at the wall and at the initial 
position of freezing front are satisfied. 

Expanding the dependent variable, temperature, in terms of 
the strained coordinates gives 

0=0o"~ ~ 8ioi(~, f~)) (12) 
i = 1  

We now change the independent variables in the system of 
Equations 6-9 from (r, ry) to ((I), qQ. We then expand these 
equations in terms of e to obtain the zeroth- and first-order 
equations. 

The zeroth-order equations are: 

0 F 00o-1 00o 
~ L(I) ff~J + j  ~ = 0  (13) 

0o(~, ¢,= ~F)= 1 (14) 

1 O0o 
/~(0o- ~)+ (0o'- ~') ~ =  1 (15) 

Bi ,  O(I) 

Notat ion  

Bi 
Bit 
C 
C 1 , C 2  

e 

h 
H 
Ha 
J 
K 
L 
r 

R 
RI 
Ro 

Biot number 
Equivalent radiation Biot number 
Heat capacity of solid 
Integration constants 
Emissivity of the boundary 
Convection heat transfer coefficient 
Dimensionless enthalpy 
Enthalpy (latent and sensible) 
0 for the cylinder; 1 for the sphere case 
Thermal conductivity of solid 
Latent heat of fusion 
Dimensionless radial position 
Dimensionless radial position of the freezing front 
Radial position 
Radial position of the freezing front 
Radius of the sphere or cylinder 

t 
T 

Time 
Temperature in solid 
Freezing temperature 
Temperature of the cooling environment 

Greek symbols 
ct Dimensionless ambient temperature, T~/T I 
fl Ratio of convection to radiation Biot numbers, 

Bi/ai, 
e Stefan number, CTI/L 
0 Dimensionless temperature in solid 
p Density of solid 
a Stefan-Boltzmann constant 
o~ Straining variable 
r Dimensionless time 
(I) Straining function 

Straining function 
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The first-order equations are: 

0201 1 "" 0trl 00° 
(I) 001 )2 + ( 0(]) +J! ~30 

000 000 

0~(q', O = q ' ) = 0  

I 001 0al ~0o] 

80 oo ~ j  
0 1 -  ¢ = 1  

Bir[40o 3 + fl] 

020.1 000 0200 (- 001 

( 1 6 )  

(17) 

(18) 

Solving the zeroth-order equations for the sphere gives 

Oo=~+C 1 (19) 

where the coefficients C~(O, q?) and C2(O, ~ )  are obtained from 
the following equations by applying the boundary conditions: 

C2 --W(1 -C1)  (20) 

4W 3 6~IJ2 -'> [-4tF3 + fl qJ ] 
C~+ (1 _l,p~ C1 + ( 1 ~  C, + L ( I ~ - ~  B i , (~V) ,  i_ C1 

W'* -- a'* + fl(W -- a) -- (qJ/Bir) -I- 0 (21) 
(1 -- tIJ)4 

Similarly, for the cylinder: 

Oo=C1 In O+C2 (22) 

with the coefficients again found by applying the boundary 
conditions: 

C 2 = 1 - C  a In ~F (23) 

, 4C~ 6C 2 C1(4+fl) (1-ct4+fl(1-ct)+C1/Bi~) 
C l - -  -~ - -  + =0 

In W (In W) z (In ud)3 (In W) 4 

(24) 

Equations 21 and 24 are implicit polynomials for the constant 
C1. Although their solution is trivial and only requires a simple 
numerical scheme to find the roots, they prevent the casting of 
the solution of 00(0, qJ) and 01(O, u?) in an explicit form. We 
now choose the straining function, tr 1, so that the first-order 
term in the temperature expansion, 0~, is identically zero. This 
choice provides a differential equation for the function 0" 1 (0, q'): 

02 020.1 1 +j)O ~ +  (1 +j)o- 1 ~ - (  

dC. 
--j) ln(O) -- '+jO (25) 

with boundary conditions 

al(W, 0 =  1)=0 (26) 

00"1 (UI/, (1)-~ 1 ) = 0  (27) 
0W 

Equations 25-27 are forced Euler equations. The solution for 
the sphere is 

a'=-~--2[~ dc' +~ldCE03dq j -~l(dCl+2dC2~02\~ ~ ' /  

1(2dC1+ ~ - )  ] 
+ 6 \  d~- 3 • (28) 

and for the cylinder is 

4WI fFdC2 dCI ( dC2 dtF dtI j '/ ] 0.1= l L ~  I- 2 lnO • 

+(dCl\ dW dc2du? dCldW l nO)  O3 } (29) 

We use Equations 19-24, 28, and 29 to calculate the freezing 
front location and the freezing time of the enclosed fluid for 
various values of the parameters e, ~, and ft. 

We obtain the total freezing time by using an energy balance 
at the freezing front (Equation 9) and 

dz dr drf 
- ( 3 0 )  

dW dry dud 

to give 

dW dW\O@ dr/ la,=,t' (31) 

with the initial condition 

z(q' = 1) = 0 (32) 

Substituting Equations 19, 20, 21, and 28 (for the sphere) and 
Equations 22, 23, 24, and 29 (for the cylinder) into Equation 31 
provides the total freezing time for the various values of 
parameters e, ct, and 3. 

Numerical solution 
In order to evaluate the results of the perturbation analysis, 
we compare them with the numerical solution of the governing 
equations for freezing of radial systems described by Equations 
1-4. For this purpose we cast the equations in terms of enthalpy 
He (sum of latent and sensible heats). 21'22 If we define nondi- 
mensional enthalpy as 

H= Ha 
crs 

the energy equation and boundary condition become 

OH 11 a / - - 1  - / / r00"~+j  100 (33) =77art ar) tar  

~?O = 1 = - B i ( 0 -  ~ )  - B i r ( 0 4  - ~ 4 )  ( 3 4 )  

where temperature and enthalpy are related by 

l < H < l + l / e  
0 = (35) 

H - - ~  H > l + l / e  

Furthermore, for the center node we impose the condition: 

1 00 020 
lim . . . .  0 (36) 
r ~ o  r Or Or 2 

We solve Equations 34-36 for both cnthalpy and temperature, 
using a finite difference formulation similar to that presented 
in ref. 17. We calculate the position of the front at any particular 
time by using a volume-weighted interpolation in space between 
the appropriate consecutive nodes where the front is located. 
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Figure 3 Freezing front location as a function of time for various 
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R e s u l t s  a n d  d i s c u s s i o n  

Freezing f ront  locat ion 

The freezing front position and its movement in the enclosed 
fluid is found by perturbation method and compared with the 
results of the numerical analysis. For this purpose the front 
location as a function of time is presented in Figures 2-4 for 
the sphere. The dimensionless ambient temperature, c~, is zero 
in these figures. The Stefan number, e, is 0.5. Figure 2 illustrates 
the location of the front at different times for no convection at 
the surface (/~ = 0.0) at various radiative cooling rates (Bi, from 
1 to 100). Figure 3 shows the results for the same range of Biot 
number but for equal convective and radiative contributions 
(/~= 1.0). The perturbation and numerical results in this case 
are also tabulated for comparison purposes in Table 1. Finally, 
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Figure 4 presents the location of the front in the absence of 
radiation at the surface of the sphere (/Y = oo). For the entire 
range of the Biot numbers discussed, the perturbation results 
are in very good agreement with the numerical results at this 
value of the Stefan number. The divergence of the two results 
is slightly more pronounced near the center of the sphere but 
still remains small (less than 7%). Comparison of Figures 2 
and 4 also suggests that, for a given value of the Biot number, 
pure convective cooling (fl= oo) is more effective than pure 
radiative cooling (8=0) at zero dimensionless temperature. 
That is, the total freezing time for fl = oo is, depending on Biot 
number, only about half the time needed for/Y = 0. 

The effect of varying the Stefan number is illustrated for the 
case of cylinder in Figures 5-7. The dimensionless temperature 

T a b l e  1 Required freezing time calculated by the perturbation and numerical methods for different Bi, (sphere: ~=0.5, /Y=1.0,  ~=0.0)  

r 

Bir 

0.0 0.2 0.4 0.6 0.8 

Num. Pert. Num. Pert. Num. Pert. Num. Pert. Num. Pert. 

1 .52150 .5554 .47664 .48034 .38146 .38184 .25602 .25956 .11774 .12348 
2 .39450 .4163 .35544 .35384 .27612 .27300 .17709 .17736 .07537 .07811 
5 .30300 .3164 .26812 .26360 .20055 .19561 .12114 .11949 .04650 .04755 

100 .23060 .2390 .19835 .19311 .13842 .13400 .07365 .07191 .02242 .02181 
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is selected to be zero and the relative effects of convective and 
radiative cooling are set equal (flu 1.0). Figure 5 shows the 
results for e=0.5,  Figure 6 for e= 1.0, and Figure 7 for e=2.0. 
For  e=0.5, the perturbation and numerical results are also 
presented and compared in Table 2. The divergence of the two 
results increases with increases in the value of the Stefan 
number, as expected. However, even for e = 1.0, the difference 
in the results is still small and remains below 10% for all values 
of the Biot number. For  e=2.0,  the divergence reaches a 
maximum of about 18%. Comparison of Figure 3 and Figure 
5 shows that the freezing time for a cylinder is considerably 
larger than for a sphere of the same radius. 
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Figure 9 Time for complete freezing as a function of ambient 
temperature for various Bi, (sphere: /Y = 1 ) 

Total freezing t ime 

The effect of variation of the dimensionless ambient temperature 
on the total required freezing time of the enclosed liquid is 
presented in Figures 8, 9, and 10 for e = 0.5 and f l= 0, 1, and oo, 
respectively. The range selected for the appropriate Biot number 
in each case is 0.05 to 100. Comparison of Figures 8 and 10 
indicates that convective cooling is more effective than radiative 
cooling at smaller values of c< (e.g., ~<0.3 for Bi,= 1.0, and 
~<0.2 for Bi,=0.1), but the inverse is true for large ~ and 

T a b l e  2 Required freezing time calculated by the perturbation and numerical methods for different Bi, (cylinder: e=0.5,/Y= 1.0, c~=0.0) 

r 

Bi, 

0 0.2 0.4 0.6 0.8 

Num. Pert. Num. Pert. Num. Pert. Num. Pert. Num. Pert. 

1 .75250 .7847 .65375 .65340 .48740 .48825 .30341 .30756 .12885 .13483 
2 .56600 .5869 .48323 .47843 .34951 .34662 .20819 .20894 .08218 .08500 
5 .43150 .4446 .36029 .35342 .25026 .24566 .14080 .13956 .05069 .05153 

100 .32610 .3346 .26247 .25587 .16950 .16507 .08395 .08228 .02376 .02329 
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moderate Biot numbers. Comparison of the numerical and the 
perturbation results for a Stefan number of 0.5 shows very good 
agreement. In general, the difference between the two results 
decreases with decreases in the Stefan number and increases in 
the Biot number. A change in the dimensionless ambient 
temperature does not noticeably affect the accuracy of the 
perturbation results. 

Temperature profi les 

The temperature profile computed from the perturbation 
analysis is compared with the numerical result in Figure 11. 
The result for the sphere is shown at ct=0.0 and f l= l .0  
(Bi = Bit = 1.0). The agreement is reasonable for larger dimen- 
sionless radii. However, the two results diverge in the vicinity 
of the center, with a maximum error of approximately 8 %. The 
temperature profile for the cylindrical case is similar but is not 
presented here for space reasons. However, the perturbation 
results for both the sphere and the cylinder are compared with 
the numerically computed values. The results for two selected 
values of ~ are presented in Table 3. 

Conclusion 

Comparison of the two methods for solution of the inward 
solidification in radial systems suggests several conclusions. First, 
the perturbation method can provide accurate solutions for 
Stefan numbers below 0.5. As discussed--and depending on 
other parameters--reasonably accurate results are obtained 
even for values as high as e = 2.0 (for water, e ~ 1.6). Second, 
convective cooling is more effective, as expected, at smaller 
values of the dimensionless ambient temperature than is radiative 
cooling. At higher values of the ambient temperature, radiative 
cooling becomes significantly more important. Finally, the 
major advantage of the perturbation method remains its 
simplicity and significantly less required computational time (if 
any). The total required computational time for the perturbation 
method (which involved only numerical integration independent 
of the parameters of the problem) remained at least more than 
two orders of magnitude less than the computational time 
required for the numerical (enthalpy) method. 
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